WHY STUDENT PREFER US?  
4.9/5

5 Star Rating

93940

Orders Deliver

3949

PhD Experts

24x7

Support

100%

Privacy

100%

Top Quality

Sample Details

2nd Order Reaction in CSTR

Number Of View : 712

Download : 0

Pages: 2

Words : 450

Question :

 

PROBLEM STATEMENT A second order reaction where A → B takes place in an isothermal, jacketed CSTR. The exothermic reaction occurs at 200°C. Heat transfer fluid enters the jacket at 35°C. Component A is fed into the reactor at 500 mol/m and a temperature of 50°C. The reaction rate constant is 0.001 m3/(mol.s) and conversion is 82%.

AH, = -12.5 J/mol

CPA = 10 J/(mol-K)

a. Based on mole balance and a volume of 5 cubic meters, what is the initial flow rate of A? b. What is the heat transfer area if the heat transfer coefficient is 1.85 kJ/(m2K.h)?

 

Answer :

 

Given Data:

Reaction Temperature = T = 200oC,       Component A Concentration = CA0 = 500 mol/m3

Heat Transfer |Fluid Entering Temperature = T1 = 35oC

Component A entering temperature = T0 = 50oC

Reaction Rate Constant = k = 0.001m3/(mol.s),                     % Conversion = 82%                       

Reactor volume = 5m3

CPA = 10 J/(mol.K)                  Heat Transfer |Coefficient = 1.85 kJ/(m2.K.h)

 

Solution part a:

For second order reaction, the rate law/rate of reaction can be expressed as follows,

rA = -k*[CA]2   (1)

Applying mass balance for component A

Accumulation = Molar flow of A entering – Molar flow of A leaving + generation

Considering steady state situation (Accumulation = 0). CA is the concentration of A at the outlet of reactor, because the reaction is 82% complete so there will some unreacted component A at the exit of reactor.

0 = FA0 – FA + rA*V    (V is the volume of reactor)

0 = vo*CAo – vo*CA – k*[CA]2*V (2)

(vo is the volumetric flow rate and since accumulation is zero so it’s constant at the inlet and exit of reactor). 

The conversion in the CSTR reactor can be defined as follows:

X = (CAo – CA)/CAo                  CA = CAo(1– X)                     CA = 90 mol/m3

Now substitute CA = 90 mol/m3 in equation 2, we get

40.5 = 410 vo      vo = 0.0988 m3/s or 355.61 m3/hr

 

 

Solution part b:

Applying energy balance taking reactor temperature T0 as reference temperature

Assumptions:

No phase change, constant heat capacity 

Heat Accumulation = Heat Flow in – Heat Flow Out + Q

 (Where Q is the heat transfer across the wall of the rector due to the flow of coolant in the reactor jacket)

The final simplified equation of energy balance can be written as 

          0 = -FAo*CPA*(T-To) + ΔHrx*rA*V + Q

 

Q = vo*CAo*CPA*(T-T0) + ΔHrx*k*CA2*V

Putting numerical values in above equation, we get

Q = 73593.75 kJ/hr

The heat transfer equation for equipment can be written as:

Q = U*A*dT (dT is the temperature difference between the reactor and coolant temperatures) 

Q is the heat flow; A is the area and U is the heat transfer coefficient.

Solving above equation for Area (A), we get 

 

Area = A = 241m2

 

Place Order For A Top Grade Assignment Now

We have some amazing discount offers running for the students

Order Now

Get Help Instantly

    FREE FEATURES

    Limitless Amendments

    $09.50 free

    Bibliography

    $10.50 free

    Outline

    $05.00 free

    Title page

    $07.50 free

    Formatting

    $07.50 free

    Plagiarism Report

    $10.00 free

    Get all these features for $50.00

    free

    Latest Blog Boost your grades with expert tips and tricks from our academic blog.

    50-Best-Health-Research-Topics-to-Excel-in-2026-.jpg

    50 Best Health Research Topics to Excel in 2026

    For health research, choose topics that are focused, relevant, and from areas like public health, clinical care, mental health, technology, and lifestyle. After choosing a good […]

    10-Tips-to-Stay-Productive-in-Online-Classes-.jpg

    10 Tips to Stay Productive in Online Classes

    If you want to stay productive in online classes, create a structured routine, set clear goals, manage distractions, and actively participate in lectures. Also, take […]

    How-to-Get-Expert-Assignment-Help-without-Breaking-University-Rules-.jpg

    How to Get Expert Assignment Help without Breaking University Rules

    You can get expert assignment help ethically by using it for guidance, clarification, and editing rather than submitting work done by someone else. Choose trusted […]

    View More Blogs

    Ready to Get Started?

    Join thousands of students across the U.S. who’ve improved their scores with expert academic help tailored to their needs.